Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Theses (UMKC)
    • 2017 Theses (UMKC)
    • 2017 UMKC Theses - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Theses (UMKC)
    • 2017 Theses (UMKC)
    • 2017 UMKC Theses - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Mesh Adaptation in Fractured Reservoir Simulation

    Azeez, Ahmed
    View/Open
    [PDF] Mesh Adaptation in Fractured Reservoir Simulation (2.895Mb)
    Date
    2017
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Natural fractures exist in many oil and gas reservoirs. On the other hand, hydraulic fracturing (fracking) is needed to create fractures in some reservoirs to improve the production rate. For example, shale gas reservoirs typically have extremely low permeability but have become an attractive source for natural gas production largely due to the advancement of horizontal drilling and hydraulic fracturing techniques. The permeability in fractures are much higher than that in other parts of the reservoir but the sizes of the fractures are much smaller. Thus, it is desirable to place more mesh elements around the fractures during the simulation and computations. Mesh adaptation is a very useful technique to help improving the accuracy and efficiency of the computation, and can be applied in computations for many problems such as plasma physics, image processing, and reservoir simulation in petroleum engineering. This study will focus on mesh adaptation in fractured reservoir simulation. The mesh will be adapted automatically so that more elements are concentrated around the fractures and less elements are distributed in other places. By this way, the reservoir simulation can be more accurate and efficient which is critical in helping control the production rate, optimize hydraulic fracturing design, and evaluate enhanced oil recovery processes. The goal of this study is to evaluate the effects of different mesh adaptation methods when solving a partial differential equation called porous media equation (PME). The porous media equation is solved using Finite Element Method with the software FreeFem++ that has built-in mesh adaptation functionality. The mesh is adapted based on a metric tensor that determines the shape, size and orientation of the mesh elements. The results are compared with uniform meshes and meshes created based on log-spacing. The numerical results show that adaptive meshes based on metric tensor provide the best results.
    Table of Contents
    Introduction -- Porous media equations and fractured reservoir -- Finite element method and MESH adaptation -- Numerical results -- Conclusions and summary
    URI
    https://hdl.handle.net/10355/62661
    Degree
    M.S.
    Thesis Department
    Mathematics (UMKC)
    Collections
    • 2017 UMKC Theses - Freely Available Online
    • Mathematics and Statistics Electronic Theses and Dissertations (UMKC)

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems