Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2008 Theses (MU)
    • 2008 MU theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2008 Theses (MU)
    • 2008 MU theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Variable-temperature [superscript 1]H-NMR and AB initio study of 5-amino-imidazole-4-carboxamide (AICA) : competing paths for amide-H scrambling

    Liu, Yang, 1974 Dec. 2-
    View/Open
    [PDF] public.pdf (2.301Kb)
    [PDF] short.pdf (8.282Kb)
    [PDF] research.pdf (1.961Mb)
    Date
    2008
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    5(4)-aminoimidazole-4(5)-carboxamide (AICA and TAICA) is an important precursor for the synthesis of purines in general and of the nucleobases adenine and guanine in particular. Biotic nucleobase synthesis has been studied in great detail and its chemistry and biochemistry are understood very well. In contrast, hypotheses regarding prebiotic nucleobase syntheses remain controversial. While such studies focused on aqueous solution chemistry for half a century, planetary nucleobase syntheses in frozen solids (ice) and other extreme environments have been explored in the past two decades. Spectacular advances in observational astronomy and the evolving knowledge about the chemistry and physics of the interstellar medium (ISM) suggest new options and the very possibility of prebiotic nucleobase synthesis in the cold ISM. The discourse about prebiotic chemistry in interstellar space relies on observational astronomy. Hence, precise knowledge is required about the spectroscopic properties of presumed intermediates together with knowledge of their structural preferences and their isomerization dynamics. Here, we report on the structure and dynamics of AICA in a variety of solvents and the gas phase. The interplay between CC- and CN- rotations are discussed as well.
    URI
    https://hdl.handle.net/10355/6281
    https://doi.org/10.32469/10355/6281
    Degree
    M.S.
    Thesis Department
    Chemistry (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2008 MU theses - Freely available online
    • Chemistry electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems