Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2008 Theses (MU)
    • 2008 MU theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2008 Theses (MU)
    • 2008 MU theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Laboratory load tests of side shear for axially loaded piles

    Rose, Nathan S.
    View/Open
    [PDF] public.pdf (2.673Kb)
    [PDF] short.pdf (13.74Kb)
    [PDF] research.pdf (3.110Mb)
    Date
    2008
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Results from the laboratory testing program suggest that HPX-piles have approximately 10 percent greater side shear capacity than conventional HP-piles, on average. Unit side shear and the side shear parameter [beta] for both smooth and textured piles generally increased with increasing effective stress and increasing over consolidation ratio. HPX-piles were found to exhibit slightly greater settlement at failure than HP-piles, although scatter in the settlement data was significant.. Steel H-piles are small displacement deep foundation elements. Typically, H-piles are driven to/into a hard stratum and the axial capacity of the pile is derived from the end bearing of the pile tip on the hard stratum. However, H-piles can be and are used as friction piles. Presumably, if the side shear capacity of a given H-pile can be increased, the use and applicability of H-piles will also increase. Conventional H-piles have smooth flanges. The objective of the research presented was to evaluate the effect that texturing of pile flanges has on the side shear capacity of an H-pile. The objective was addressed by performing a series of laboratory load tests on full-scale sections of smooth (HP) and textured (HPX) piles to assess differences in load transfer via side shear.
    URI
    https://hdl.handle.net/10355/6286
    https://doi.org/10.32469/10355/6286
    Degree
    M.S.
    Thesis Department
    Civil engineering (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2008 MU theses - Freely available online
    • Civil and Environmental Engineering electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems