Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2008 Theses (MU)
    • 2008 MU theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2008 Theses (MU)
    • 2008 MU theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    GPS measurements of present day crustal deformation within the Lebanese Restraining Bend along the Dead Sea Transform

    Jaafar, Rani
    View/Open
    [PDF] public.pdf (32.28Kb)
    [PDF] short.pdf (32.41Kb)
    [PDF] research.pdf (2.961Mb)
    Date
    2008
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    The Lebanese restraining bend is a 200 km long bend with a left lateral sense of slip located along the Dead Sea fault system (DSFS) between 33.2 and 34.6 degrees north latitude. The DSFS is a transform plate boundary fault system accommodating the differential northward movement of Arabian and Sinai plates relative to the Eurasian plate. Within the Lebanese Restraining bend, The DSFS splays into five left-lateral strike-slip faults, forming a positive flower structure. This study combines GPS measurements from Lebanon, where surveys span about 5.5 years, with sites from the Anti Lebanon Mountains in SW Syria for a more complete view of crustal deformation in the restraining bend. The GPS network includes continuous GPS sites and 27 campaign sites: 14 sites in Lebanon installed in 2002, 8 sites in Lebanon installed in 2005, and 5 sites in southwestern Syria. Preliminary velocities for older campaign sites have uncertainties less than 0.75 mm/yr, whereas newer sites have around 1.5 mm/yr uncertainties. The improved spatial coverage and reduced uncertainties allow constructing; 1) elastic fault models that explore strain partitioning between two strike slip faults (Yammouneh and Serghaya faults) and a generalized off-shore thrust fault to accommodate convergence in the restraining bend, and 2) continuum (velocity gradient) models that explore infinitesimal strain and rotation rates. The models suggest a displacement rate of 4.5-5.5 mm/yr along the Yammouneh fault and a counter clock wise rotation of 0.5[degrees]-1.75[degrees]/MA within the bend. This study provides an essential tool for assessing the seismic hazard in the vicinity of the Lebanese restraining bend.
    URI
    https://hdl.handle.net/10355/6288
    https://doi.org/10.32469/10355/6288
    Degree
    M.S.
    Thesis Department
    Geological sciences (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2008 MU theses - Freely available online
    • Geological Sciences electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems