Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri System
    • Missouri Summits
    • Missouri Regional Life Sciences Summit 2010
    • Abstracts (Missouri Regional Life Sciences Summit 2010)
    • View Item
    •   MOspace Home
    • University of Missouri System
    • Missouri Summits
    • Missouri Regional Life Sciences Summit 2010
    • Abstracts (Missouri Regional Life Sciences Summit 2010)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Guided-mode resonance biochip system for early detection of ovarian cancer

    Koulen, Peter
    Wawro, Debra
    View/Open
    [PDF] Guided-modeResonanceBiochipSystem [abstract].pdf (11.89Kb)
    [PDF] GuidedModeResonanceBiochip.pdf (188.8Kb)
    Date
    2010-03
    Contributor
    University of Missouri (System)
    Format
    Poster
    Metadata
    [+] Show full item record
    Abstract
    A high-accuracy, sensor system has been developed that provides near-instantaneous detection of biomarker proteins as indicators of ovarian serous papillary carcinoma. Based upon photonic guided-mode resonance technology, these high-resolution sensors employ multiple resonance peaks to rapidly test for relevant proteins in complex biological samples. This label-free sensor approach requires minimal sample processing and has the capability to measure multiple agents simultaneously and in real time. In this work, a sensor system that uses a fixed-wavelength source with a shaped input wavefront to auto-scan in angle has been developed. As binding events occur at the sensor surface, resonance reflection peak shifts are tracked as a function of incident angle on an integrated CMOS detector. The amount of angular shift is linearly correlated to the quantity of biomarker protein in a biological sample. Multiple resonance peaks provide increased detection information about the binding dynamics occurring at the sensor surface, thus decreasing false detection readings. Simultaneous detection of multiple biomarker proteins in parallel with sensitivities in the pM range contributes to the potential for differential real-time data analysis. A biochip system prototype has been developed and the system performance characterized. Identification and quantification of protein biomarkers that are up- or down- regulated in blood and serum as indicators of ovarian cancer will be presented.
    URI
    http://hdl.handle.net/10355/6328
    Part of
    Abstracts (Missouri Regional Life Sciences Summit 2010)
    Collections
    • Abstracts (Missouri Regional Life Sciences Summit 2010)
    • Posters (Missouri Regional Life Sciences Summit 2010)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems