[-] Show simple item record

dc.contributor.advisorFox, Neil I. (Neil Ian)eng
dc.contributor.authorWendt, Jordan A.eng
dc.date.issued2017eng
dc.date.submitted2017 Springeng
dc.description.abstractThere have been many studies on the evaluations of drop-size distributions and the parameters that affect these distributions, however, few, if any, have directly compared the relationship between the radar-derived parameters and those parameters that are disdrometer-derived. This study focuses on many different features of thunderstorms that changes the structure of the drop-size distribution (DSD) including: Horizontal reflectivity (ZH), differential reflectivity (ZDR), median drop diameter (D0), the shape parameter of the gamma-distributed DSD ([mu]), and the slope parameter of the gamma-distributed DSD (lambda). This work compares data collected by two disdrometers (OTT PARSIVEL and the Campbell Scientific Present Weather Sensor 100) against DSD parameters derived from dual-polarization radar observations. Using the Warning Decision Support System-Integrated Information (WDSS-II), radar data was merged at 1-km resolution to account for the movement of the precipitation systems before comparing to the 10-minute disdrometer data intervals. It was found that to accurately estimate DSDs from the perspective of using a weather radar, a larger precipitation event is needed. At the beginning and end of a precipitation event the difference between the radar retrieved values of D0, [mu], and [lambda] and those sampled by the disdrometer were much greater than during the middle of the event. Throughout the majority of the cases, the radar-derived reflectivity values were consistently lower than those collected by the disdrometers.eng
dc.identifier.urihttps://hdl.handle.net/10355/63388
dc.identifier.urihttps://doi.org/10.32469/10355/63388eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.eng
dc.sourceSubmited to University of Missouri--Columbia Graduate School.eng
dc.titleComparison of dual-polarization radar-derived and disdrometer drop-size distributions with S- and X- band radarseng
dc.typeThesiseng
thesis.degree.disciplineNatural resources (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelMasterseng
thesis.degree.nameM.S.eng


Files in this item

[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record