Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2015 Dissertations (MU)
    • 2015 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2015 Dissertations (MU)
    • 2015 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Analysis of host-pathogen interactions via clustering, statistical analysis, and data visualization

    Warren, Samantha
    View/Open
    [PDF] research.pdf (4.018Mb)
    [PDF] public.pdf (1.852Kb)
    Date
    2015
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Infectious diseases are caused by a variety of agents: viruses, bacteria, parasites, or even proteins. Using existing state-of-the-art methods and tools I developed myself, I studied aspects of infectious agents. To find the most conserved and diverse regions of influenza A proteins, I found clusters of extremely conserved or diverse residues. Because traditional methods of clustering proved ineffective for diverse regions, I developed a Metropolis Criterion Monte Carlo (MMC) clustering algorithm to discover clusters of extremely diverse regions. In addition to viruses, I studied pathogenic bacterial proteins known as effectors. Using an in-house prediction method, Preffector, I generated predicted effectors for 14 bacteria and created a database and webserver to hold relevant information: BacPaC. BacPaC uses intuitive visualizations and script-generated profile pages to display relevant data about the predicted effectors. Finally, I applied structural modeling and docking techniques to soybean proteins that are known to incur resistance to nematodes. For each of these studies, I used clustering, data analysis, and data visualization to better understand infectious agents.
    URI
    https://hdl.handle.net/10355/63931
    https://doi.org/10.32469/10355/63931
    Degree
    Ph. D.
    Thesis Department
    Computer science (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2015 MU dissertations - Freely available online
    • Computer Science electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems