Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2014 Dissertations (MU)
    • 2014 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2014 Dissertations (MU)
    • 2014 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthorAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthorAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Fluorescent chemosensors for the detection of biological amines

    Klockow, Jessica L.
    View/Open
    [PDF] research.pdf (6.336Mb)
    [PDF] public.pdf (1.783Kb)
    Date
    2014
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Chemical sensing has become an important field for the study of bioanalytes and provides key information pertaining to disease pathogenesis, and the physiological mechanisms underlying cellular processes. Discussed herein is a brief introduction to fluorescence methods for bioanalyte detection along with the design and synthesis of novel chemical sensors for important bioamines. First, we report a chemical sensor for kynurenine, a molecule known to contribute to tumor growth and the development of neurodegenerative diseases. Several coumarin dimers were developed for the two-point binding of kynurenine, but showed poor solubility in aqueous media. Later, a coumarin monomer was developed that showed high selectivity for kynurenine and a pronounced fluorescence response at low pH. Next, we produced pH-sensitive chemical sensors for neurotransmitters. The sensors are designed to produce a turn-on fluorescence response upon exocytosis. Secretion from the acidic vesicle into the neutral synaptic cleft deprotonates the sensor and makes it highly fluorescent. The sensor’s fluorescence response is easily tuned by altering the pKa of the pH-sensitive group through a single coupling reaction. By slightly altering the coumarin core, we then achieved a three-input sensor for pH, glutamate, and zinc as the latter two molecules are copackaged in high concentrations in glutamatergic boutons. An 11-fold fluorescence enhancement of the sensor-glutamate-zinc bound complex was observed at the pH values germane to exocytosis.
    URI
    https://hdl.handle.net/10355/63996
    Degree
    Ph. D.
    Thesis Department
    Chemistry (MU)
    Collections
    • 2014 MU dissertations - Freely available online
    • Chemistry electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems