Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2018 Dissertations (MU)
    • 2018 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2018 Dissertations (MU)
    • 2018 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Significance linked connected component analysis plus

    Jiang, Xiaobo
    View/Open
    [PDF] research.pdf (1.658Mb)
    Date
    2018
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    An image coding algorithm, SLCCA Plus, is introduced in this dissertation. SLCCA Plus is a wavelet-based subband coding method. In wavelet-based subband coding, the input images will go through a wavelet transform and be decomposed into wavelet subband pyramids. Then the characteristics of the wavelet coefficients within and among subbands will be utilized to removing the redundancy. The rest information will be organized and go through entropy encoding. SLCCA Plus contains a series improvement method to the SLCCA. Before SLCCA, there are three top-ranked wavelet image coders. Namely, Embedded Zerotree Wavelet coder (EZW), Morphological Representation of Wavelet Date (MEWD), and Set Partitioning in Hierarchical Trees (SPIHT). They exploit either inter-subband relation among zero wavelet coefficients or within-subband clustering. SLCCA, on the other hand, outperforms these three coders by exploring both the inter- subband coefficients relations and within-subband clustering of significant wavelet coefficients. SLCCA Plus strengthens SLCCA in the following aspects: Intelligence quantization, enhanced cluster filter, potential-significant shared-zero, and improved context models. The purpose of the first three improvements is to remove redundancy information further while keeping the image error as low as possible. As a result, they achieve a better trade-off between bit cost and image quality. Moreover, the improved context lowers the entropy by refining the classification of symbols in cluster sequence and magnitude bit-planes. Lower entropy means the adaptive arithmetic coding can achieve a better coding gain. For performance evaluation, SLCCA Plus is compared to SLCCA and JPEG2000. On average, SLCCA Plus achieves 7% bit saving over JPEG 2000 and 4% over SLCCA. The results comparison shows that SLCCA Plus shows more texture and edge details at a lower bitrate.
    URI
    https://hdl.handle.net/10355/66087
    Degree
    Ph. D.
    Thesis Department
    Computer science (MU)
    Rights
    OpenAccess
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
    Collections
    • Computer Science electronic theses and dissertations (MU)
    • 2018 MU dissertations - Freely available online

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems