[-] Show simple item record

dc.contributor.advisorCutkosky, Daleeng
dc.contributor.authorDutta, Arpaneng
dc.date.issued2018eng
dc.date.submitted2018 Springeng
dc.description.abstractIn this thesis we develop a method for constructing generating sequences for valuations dominating the ring of a two dimensional quotient singularity. Suppose that K is an algebraically closed field of characteristic zero, K[X, Y] is a polynomial ring over K and v is a rational rank 1 valuation of the field K(X, Y) which dominates K[X, Y](X,Y) . Given a finite Abelian group H acting diagonally on K[X, Y], and a generating sequence of v in K[X, Y] whose members are eigenfunctions for the action of H, we compute a generating sequence for the invariant ring K[X, Y]H. We use this to compute the semigroup SK[X,Y ]H (v) of values of elements of K[X, Y]H. We further determine when SK[X,Y ]H (v) is a finitely generated SK[X,Y ]H (v)-module.eng
dc.description.bibrefIncludes bibliographic referenceseng
dc.format.extentiv, 45 pageseng]
dc.format.extentiv, 45 pageseng]
dc.identifier.urihttps://hdl.handle.net/10355/66163
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcollectionUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccesseng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Licenseeng
dc.titleGenerating sequences and semigroups of valuations on 2 dimensional normal local ringseng
dc.typeThesiseng
thesis.degree.disciplineMathematics (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]

This item appears in the following Collection(s)

[-] Show simple item record