Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2008 Dissertations (MU)
    • 2008 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2008 Dissertations (MU)
    • 2008 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Theoretial [sic] analysis of oscillating motion, heat transfer, minimum meniscus radius and charging procedure in an oscillating heat pipe

    Cheng, Peng, 1979-
    View/Open
    [PDF] public.pdf (2.120Kb)
    [PDF] short.pdf (9.412Kb)
    [PDF] research.pdf (2.162Mb)
    Date
    2008
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    With the rapid development of electronic technology, investigation and application of devices with high performance of heat removal have become competitive issues recently. Different from traditional heat transfer strategy, many new promising ideas and technologies were introduced into thermal management, one of which is Oscillating Heat Pipe (OHP). In the current investigation, a theoretical analysis predicting the oscillating motion, heat transfer, and thin film evaporation occurring in the OHP is developed. The new model predicting the oscillating motion in an OHP can predict the effects of turn number and gravitational force in addition to the liquid charging ratio, operating temperature, working fluid, and heat input. Using the oscillating motion predicted with the new model developed, a heat transfer model predicting the temperature difference between the evaporator and condenser is developed. The thin film evaporation model includes the momentum effect on the thin film profile and evaporation. The model considers the effects of inertial force, disjoining pressure, surface tension, and curvature. The model can be numerically solved for the thin film profile, interfacial temperature, meniscus radius, heat flux distribution, velocity distribution, and mass flow rate in the evaporating thin film region. Furthermore, in the current investigation, a mathematical model predicting the minimum meniscus radius occurring in the sintered particles is developed. Moreover, a theoretical analysis predicting the charging process is conducted. The results provide a guideline for the charging process.
    URI
    https://hdl.handle.net/10355/6634
    https://doi.org/10.32469/10355/6634
    Degree
    Ph. D.
    Thesis Department
    Mechanical and aerospace engineering (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2008 MU dissertations - Freely available online
    • Mechanical and Aerospace Engineering electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems