Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2018 Dissertations (MU)
    • 2018 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2018 Dissertations (MU)
    • 2018 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Rheological and morphological evolution of basaltic lava flows

    Soldati, Arianna
    View/Open
    [PDF] research.pdf (11.24Mb)
    Date
    2018
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Over 500 million people live in proximity of an active volcano globally. Although lava flows rarely endanger human life, they often destroy critical infrastructure. Advancing our understanding of lava flow dynamics is therefore critical to developing accurate hazard assessment, with key socio-economic impacts for many communities. This work focuses on basaltic lava rheology, which exerts a first-order control on flow dynamics and is reflected in lava morphology. In particular, I address the following research questions: (1) How does the rheology of active flows evolve during emplacement; and (2) How can we use flow morphology to infer the rheology of inactive flows? ... At Piton de La Fournaise (La R�union, FR DOM), I addressed the longstanding question of how pre-existing topography controls lava flow system structure in volume-limited flows (Soldati et al., accepted). I concluded that a steep slope results in a single, stable channel, whereas a gentle slope results in an unstable, braided channel. The findings of this study allow us to interpret and explain the observed flow structure on the basis of pre-existing volcano topography, and to forecast future flow structure. This allowed me to determine that rheology neither affects nor is affected by flow system configuration.
    URI
    https://hdl.handle.net/10355/66784
    https://doi.org/10.32469/10355/66784
    Degree
    Ph. D.
    Thesis Department
    Geological sciences (MU)
    Rights
    OpenAccess
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
    Collections
    • 2018 MU dissertations - Freely available online
    • Geological Sciences electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems