[-] Show simple item record

dc.contributor.advisorAtwood, J. L.eng
dc.contributor.authorJin, Ping, 1972-eng
dc.date.issued2009eng
dc.date.submitted2009 Falleng
dc.descriptionTitle from PDF of title page (University of Missouri--Columbia, viewed on Feb 24, 2010).eng
dc.descriptionThe entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.eng
dc.descriptionDissertation advisor: Dr. Jerry L. Atwood.eng
dc.descriptionVita.eng
dc.descriptionIncludes bibliographical references.eng
dc.descriptionPh. D. University of Missouri--Columbia 2009.eng
dc.descriptionDissertations, Academic -- University of Missouri--Columbia -- Chemistry.eng
dc.description.abstract[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The formation of nanometer scale capsule (or capsule-like) assemblies continues to attract interest due to the potential application of such architectures as encapsulation tools or delivery vehicles, gas sequestration agents, and catalytic media, for example. C-alkylpyrogallol[4]arenes have been utilized as effective molecular subunits for assembly into supra-molecules due to their bowl-shaped cavity and their ability to form complementary and structurally directing intermolecular interactions. We recently discovered that Ga ions form metal-organic hexameric nano-capsule (MONC) with various pyrogallol[4]arene, in which 12 metal centers displaced only 36 of the 72 hydroxyl protons, resulting in distorted 'rugby-ball' like shapes and the incorporation of water molecules into what we have termed structural 'gates'. Herein we exploited this feature and tried to add various metal centers to 'fill up' the remaining potential binding sites. As a result, it is shown that the addition of different metal centers into this assembly results in the formation of a series of mixed metal MONCs with varied degrees of Ga composition and various shape change of the final nano-container. In addition to this, metal exchangeability also occurs among this family of mixed MONCs, which can be employed as a new route towards tailoring metal ratios within these large assemblies. Meanwhile, our experiments also show that metal ions (Ag, Cs or Tl) and some anions (nitrate and sulfate) can move through aqueous structural gates to the interior of pyrogallol[4]arene metal-organic nano-capsules. Moreover, as we attempted to 'stitch up' the capsule seam with the presence of elusive guest Cs metal centres, we found both changing the anion in the potential Cs guest species and adding some cation into the solution of Ga-MONCs containing Cs species can help to 'lock' the tertiary metal on the capsule interior. Subsequent 'stitching up' of the capsule seam, combined with this locking process, facilitates the permanent Cs encapsulation and affords tri-metallic Ga/Zn/Cs MONCs. On the other hand, the following Zn 'stitch up' can lead to no Tl loss for the Tl overall assembly and we finally obtained another tri-metallic Ga/Zn/Tl MONC. This is assumed as the extremely high association constant between the Tl ion and pyrogallol[4]arene molecules. Finally, the aggregate behaviors of Ga-MONCs and mixed Ga/Cu-MONCs have been studied in various solvent systems. Both spherical and hexagonal superstructures have been observed for a series of pyrogall[4]arene MONCs. Furthermore, these spherical aggregates have shown a good stability in the air.eng
dc.format.extentxix, 170 pageseng
dc.identifier.oclc606900763eng
dc.identifier.urihttp://hdl.handle.net/10355/6874
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartof2009 UM restricted dissertations (MU)eng
dc.relation.ispartofcommunityUniversity of Missouri-Columbia. Graduate School. Theses and Dissertations. Dissertations. 2009 Dissertationseng
dc.rightsAccess is limited to the campuses of the University of Missouri.eng
dc.subject.lcshNanostructures -- Design and constructioneng
dc.subject.lcshSupramolecular chemistryeng
dc.titleSynthesis of mixed metal-organic pyrogallol[4]arene nanocapsules and their host-guest chemistryeng
dc.typeThesiseng
thesis.degree.disciplineChemistry (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record