Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2018 Dissertations (MU)
    • 2018 MU dissertations - Access restricted to UM
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2018 Dissertations (MU)
    • 2018 MU dissertations - Access restricted to UM
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Adaptive and augmented nonlinear filters : theory and applications

    Sun, Tao
    View/Open
    [PDF] research.pdf (1.993Mb)
    Date
    2018
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI SYSTEM AT AUTHOR'S REQUEST.] Nonlinear estimation and filtering have been intensively studied for decades since it has been widely used in engineering and science such as navigation, radar signal processing and target tracking systems. Because the posterior density function is not a Gaussian distribution, then the optimal solution is intractable. The nonlinear/non-Gaussian estimation problem is more challenging than the linear/Gaussian case, which has an optimal closed form solution, i.e. the celebrated Kalman filter. Many nonlinear filters including the extended Kalman filter, the unscented Kalman filter and the Gaussian-approximation filters, have been proposed to address nonlinear/non-Gaussian estimation problems in the past decades. Although the estimate yield by Gaussian-approximation filters such as cubature Kalman filters and Gaussian-Hermite quadrature filters is satisfied in many applications, there are two obvious drawbacks embedded in the use of Gaussian filters. On the one hand, with the increase of the quadrature points, much computational effort is devoted to approximate Gaussian integrals, which is not worthy sometimes. On the other hand, by the use of the update rule, the estimate constrains to be a linear function of the observation. In this dissertation, we aim to address this two shortcoming associated with the conventional nonlinear filters. We propose two nonlinear filters in the dissertation. Based on an adaptive strategy, the first one tries to reduce the computation cost during filtering without sacrificing much accuracy, because when the system is close to be linear, the lower level Gaussian quadrature filter is sufficient to provide accurate estimate. The adaptive strategy is used to evaluate the nonlinearity of the system at current time first and then utilize different quadrature rule for filtering. Another filter aims to modify the conventional update rule, i.e. the linear minimum mean square error (LMMSE) rule, to involve a nonlinear transformation of the observation, which is proven to be an efficient way to exploit more information from the original observation. According to the orthogonal property, we propose a novel approach to construct the nonlinear transformation systematically. The augmented nonlinear filter outperforms Gaussian filters and other conventional augmented filters in terms of the root mean square error and consistency. Furthermore, we also extend the work to the more general case. The higher order moments can be utilized to construct the nonlinear transformation and in turn, the measurement space can be expand efficiently. Without the Gaussian assumption, the construction of the nonlinear transformation only demand the existence of a finite number of moments. Finally, the simulation results validate and demonstrate the superiority of the adaptive and augmented nonlinear filters.
    URI
    https://hdl.handle.net/10355/68972
    https://doi.org/10.32469/10355/68972
    Degree
    Ph. D.
    Thesis Department
    Mechanical and aerospace engineering (MU)
    Rights
    Access is limited to the campuses of the University of Missouri.
    Collections
    • 2018 MU dissertations - Access restricted to UM
    • Mechanical and Aerospace Engineering electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems