Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Gravimagnetic effect of the barycentric motion of the Sun and determination of the post-Newtonian parameter gamma in the Cassini experiment

    Kopeikin, Sergei M.
    Polnarev, Alexander
    Schafer, Gerhard
    Vlasov, Igor, 1978-
    View/Open
    [PDF] GravimagneticEffectBarycentricMotion.pdf (161.6Kb)
    Date
    2007
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    The most precise test of the post-Newtonian gamma parameter in the solar system has been achieved in measurement of the frequency shift of radio waves to and from the Cassini spacecraft as they passed near the Sun. The test relies upon the JPL model of radiowave propagation that includes, but does not explicitly parametrize, the impact of the non-stationary component of the gravitational field of the Sun, generated by its barycentric orbital motion, on the Shapiro delay. This non-stationary gravitational field of the Sun is associated with the Lorentz transformation of the metric tensor and the affine connection from the heliocentric to the barycentric frame of the solar system and can be treated as gravimagnetic field. The gravimagnetic field perturbs the propagation of a radio wave and contributes to its frequency shift at the level up to 4 10^{-13} that may affect the precise measurement of the parameter gamma in the Cassini experiment to about one part in 10,000. Our analysis suggests that the translational gravimagnetic field of the Sun can be extracted from the Cassini data, and its effect is separable from the space curvature characterized by the parameter gamma.
    URI
    http://hdl.handle.net/10355/6900
    Citation
    arXiv:gr-qc/0604060v6
    Collections
    • Physics and Astronomy publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems