Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    A decoupled system of hyperbolic equations for linearized cosmological perturbations

    Ramirez, Juan
    Kopeikin, Sergei M.
    View/Open
    [PDF] DecoupledSystemHyperbolicEquations.pdf (133.6Kb)
    Date
    2002
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    A decoupled system of hyperbolic partial differential equations for linear perturbations around any spatially flat FRW universe is obtained for a wide class of perturbations. The considered perturbing energy momentum-tensors can be expressed as the sum of the perturbation of a minimally coupled scalar field plus an arbitrary (weak) energy-momentum tensor which is covariantly conserved with respect to the background. The key ingredient in obtaining the decoupling of the equations is the introduction of a new covariant gauge which plays a similar role as harmonic gauge does for perturbations around Minkowski space-time. The case of universes satysfying a linear equation of state is discussed in particular, and closed analytic expressions for the retarded Green's functions solving the de Sitter, dust and radiation dominated cases are given.
    URI
    http://hdl.handle.net/10355/6978
    Citation
    arXiv:gr-qc/0110071v2
    Collections
    • Physics and Astronomy publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems