Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Theory of relativistic-reference frames for high-precision astrometric space misions

    Kopeikin, Sergei M.
    View/Open
    [PDF] TheoryRelativisticReferenceFrames.pdf (153.0Kb)
    Date
    2000
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    Recent modern space missions deliver invaluable information about origin of our universe, physical processes in the vicinity of black holes and other exotic astrophysical objects, stellar dynamics of our galaxy, etc. On the other hand, space astrometric missions make it possible to determine with unparalleled precision distances to stars and cosmological objects as well as their physical characteristics and positions on the celestial sphere. Permanently growing accuracy of space astronomical observations and the urgent need for adequate data processing algorithms require corresponding development of an adequate theory of reference frames along with unambiguous description of propagation of light rays from a source of light to observer. Such a theory must be based on the Einstein's general relativity and account for numerous relativistic effects both in the solar system and outside of its boundary. The main features of the relativistic theory of reference frames are presented in this work. A hierarchy of the frames is described starting from the perturbed cosmological Friedmann-Robertson-Walker metric and going to the observer's frame through the intermediate barycentric and geocentric frames in the solar system. Microarcsecond astrometry and effects of propagation of light rays in time-dependent gravitational fields are discussed as well.
    URI
    http://hdl.handle.net/10355/6983
    Citation
    arXiv:gr-qc/0011031v1
    Collections
    • Physics and Astronomy publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems