Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2019 Dissertations (MU)
    • 2019 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2019 Dissertations (MU)
    • 2019 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    The molecular underpinnings of neuronal cell identity in the stomatogastric ganglion of cancer borealis

    Northcutt, Adam Jared
    View/Open
    [PDF] NorthcuttAdam.pdf (7.380Mb)
    Date
    2019
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Throughout the life of an organism, the nervous system must be able to balance changing in response to environmental stimuli with the need to produce reliable, repeatable activity patterns to create stereotyped behaviors. Understanding the mechanisms responsible for this regulation requires a wealth of knowledge about the neural system, ranging from network connectivity and cell type identification to intrinsic neuronal excitability and transcriptomic expression. To make strides in this area, we have employed the well-described stomatogastric nervous system of the Jonah crab Cancer borealis to examine the molecular underpinnings and regulation of neuron cell identity. Several crustacean circuits, including the stomatogastric nervous system and the cardiac ganglion, continue to provide important new insights into circuit dynamics and modulation (Diehl, White, Stein, & Nusbaum, 2013; Marder, 2012; Marder & Bucher, 2007; Williams et al., 2013), but this work has been partially hampered by the lack of extensive molecular sequence knowledge in crustaceans. Here we generated de novo transcriptome assembly from central nervous system tissue for C. borealis producing 42,766 contigs, focusing on an initial identification, curation, and comparison of genes that will have the most profound impact on our understanding of circuit function in these species. This included genes for 34 distinct ion channel types, 17 biogenic amine and 5 GABA receptors, 28 major transmitter receptor subtypes including glutamate and acetylcholine receptors, and 6 gap junction proteins -- the Innexins. ... With this reference transcriptome and annotated sequences in hand, we sought to determine the strengths and limitations of using the neuronal molecular profile to classify them into cell types. ... Since the resulting activity of a neuron is the product of the expression of ion channel genes, we sought to further probe the expression profile of neurons across a range of cell types to understand how these patterns of mRNA abundance relate to the properties of individual cell types. ... Finally, we sought to better understand the molecular underpinnings of how these correlated patterns of mRNA expression are generated and maintained.
    URI
    https://hdl.handle.net/10355/69970
    Degree
    Ph. D.
    Thesis Department
    Biological sciences (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • Biological Sciences electronic theses and disserations (MU)
    • 2019 MU dissertations - Freely available online

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems