[-] Show simple item record

dc.contributor.advisorEdidin, Daneng
dc.contributor.authorRichey, Ryan Mattheweng
dc.date.issued2019eng
dc.date.submitted2019 Springeng
dc.description.abstractFrom the recent work of Edidin and Satriano, given a good moduli space morphism between a smooth Artin stack and its good moduli space X, they prove that the Chow cohomology ring of X embeds into the Chow ring of the stack. In the context of toric varieties, this implies that the Chow cohomology ring of any toric variety embeds into the Chow ring of its canonical toric stack. Furthermore, the authors give a conjectural description of the image of this embedding in terms of strong cycles. One consequence of their conjectural description, and an additional conjecture, is that the Chow cohomology ring of any affine toric variety ought to vanish. We prove this result without any assumption on smoothness. Afterwards, we present a series of results related to their conjectural description, and finally, we provide a conjectural toric description of the image of this embedding for complete toric varieties by utilizing Minkowski weights.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.format.extentvi, 79 pages : illustrationeng
dc.identifier.urihttps://hdl.handle.net/10355/69977
dc.identifier.urihttps://doi.org/10.32469/10355/69977eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.subject.otherMathematicseng
dc.titleThe vanishing of the chow cohomology ring for affine toric varieties and additional resultseng
dc.typeThesiseng
thesis.degree.disciplineMathematics (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]

This item appears in the following Collection(s)

[-] Show simple item record