Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2019 Dissertations (MU)
    • 2019 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2019 Dissertations (MU)
    • 2019 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Development of an experiment for investigating the magnetohydrodynamic richtmyer-meshkov instability

    Allen, Roy C. IV
    View/Open
    [PDF] AllenRoy.pdf (11.90Mb)
    Date
    2019
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Collaboration by some of the world's brightest minds of the 21st Century pinpointed fourteen Grand Engineering Challenges that face humankind today. At the top of this list is "Provide Energy from Fusion"; a requirement deemed crucial for humankind to thrive flourish. Scientists from all over the globe have risen to this challenge in many ways; most recognizably by attempting to succeed at performing inertial confinement fusion (ICF). However, ICF currently remains unsuccessful at providing net-positive energy production, largely due to hydrodynamic instabilities, such as the shock-driven Richtmyer-Meshkov instability (RMI), which occur within the fusion reaction process, creating detrimental mixing. Applying magnetohydrodynamic approaches however, can mitigate these instabilities and reduce fluid mixing. It is precisely this problem that necessitates the research on magnetohydrodynamic instabilities presented in this dissertation to aid in solving the challenge to "Provide Energy from Fusion"; specifically the development of an experiment for investigating the magnetohydrodynamic Richtmyer-Meshkov instability (MHD-RMI). ... By developing and performing the computational and experimental efforts at the Missouri Fluid Mixing and Shock Tube Laboratory (FMSTL), the author has laid the groundwork to observe the suppression of the MHD-RMI in future shock tube experiments.
    URI
    https://hdl.handle.net/10355/70057
    https://doi.org/10.32469/10355/70057
    Degree
    Ph. D.
    Thesis Department
    Mechanical and aerospace engineering (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2019 MU dissertations - Freely available online
    • Mechanical and Aerospace Engineering electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems