[-] Show simple item record

dc.contributor.advisorGates, Kent S. (Kent Stephen), 1962-eng
dc.contributor.authorSinha, Sarmistha, 1975-eng
dc.date.issued2008eng
dc.date.submitted2008 Springeng
dc.descriptionThe entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.eng
dc.descriptionTitle from PDF of title page (University of Missouri--Columbia, viewed April 27, 2010).eng
dc.descriptionThesis advisor: Dr. Kent S. Gates.eng
dc.descriptionVita.eng
dc.descriptionPh. D. University of Missouri-Columbia 2008.eng
dc.description.abstract1-Hydroxyphenazine is a secondary metabolite and virulence factor of Pseudomonas aeruginosa. This organism colonizes the airways of the patients of cystic fibrosis and causes progressive destruction of the airways. It is suggested that 1-hydroxyphenazine plays an important role in such tissue damage but mechanisms underlying the biological properties of 1-hydroxyphenazine are not well studied. We report chemical properties of 1-hydroxyphenazine which might help to explain its biological activities. The work presented here provides first evidence that 1-hydroxyphenazine in presence of one electron reducing enzyme NADPH:cytochrome P450 reductase undergoes redox cycling by reaction with molecular oxygen and produces reactive oxygen species (ROS) for example, superoxide radical, hydrogen peroxide and hydroxyl radical and generation of ROS cause oxidative stress inside the cell. In addition to this, we show that 1-hydroxyphenazine oxidizes into cytotoxic N-oxides by reaction with hydrogen peroxide, oxygen and peroxynitrite and these N-oxides of 1-hydroxyphenazine also generate ROS in presence of NADPH:cytochrome P450 reductase via redox-cycling mechanism. Generation of ROS by both 1-hydroxyphenazine and its N-oxides might be the one of the causes of cytotoxicity of lung airways of cystic fibrosis patients. We used plasmid based DNA damage assay as a tool to elucidate the chemistry of oxidative stress caused by both 1-hydroxyphenazines and N-oxides of 1-hydroxyphenazine.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.format.extentxix, 176 pageseng
dc.identifier.oclc609622645eng
dc.identifier.urihttps://hdl.handle.net/10355/7119
dc.identifier.urihttps://doi.org/10.32469/10355/7119eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.subject1-hydroxyphenazineeng
dc.subject.lcshPseudomonas aeruginosaeng
dc.subject.lcshVirulence (Microbiology)eng
dc.subject.lcshMetaboliteseng
dc.subject.lcshCystic fibrosiseng
dc.subject.lcshCytochrome P-450eng
dc.subject.lcshActive oxygeneng
dc.subject.lcshSuperoxideeng
dc.subject.lcshHydroxyl groupeng
dc.titleOxidative DNA damage by 1-hydroxyphenazine, virulence factor of Pseudomonas aeruginosa : towards a molecular understanding of the bacterial virulence factor 1-hydroxyphenazineeng
dc.typeThesiseng
thesis.degree.disciplineChemistry (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record