Magnetic and Orbital Order in LaMnO3 under Uniaxial Strain: A Model Study

MOspace/Manakin Repository

Breadcrumbs Navigation

Magnetic and Orbital Order in LaMnO3 under Uniaxial Strain: A Model Study

Please use this identifier to cite or link to this item: http://hdl.handle.net/10355/7216

[+] show full item record


Title: Magnetic and Orbital Order in LaMnO3 under Uniaxial Strain: A Model Study
Author: Nanda, B. R. K.; Satpathy, Sashi Sekhar, 1956-
Keywords: condensed matter
materials science
Date: 2009-11-04
Publisher: arXiv
Citation: arXiv:0911.0683v1
Abstract: The effect of uniaxial strain on electronic structure and magnetism in LaMnO3 is studied from a model Hamiltonian that illustrates the competition between the Jahn-Teller, super exchange, and double exchange interactions. We retain in our model the three main octahedral distortions (Q1,Q2, and Q3), which couple to the Mn (eg) electrons. Our results show the ground state to be a type A antiferromagnetic (AFM) insulating state for the unstrained case, consistent with experiments. With tensile strain (stretching along the c axis), the ground state changes into a ferromagnetic and eventually into a type G0 AFM structure, while with compressive strain, we find the type A switching into a type G structure. The orbital ordering, which displays the well known checkerboard x2−1/y2−1 structure for the unstrained case, retains more or less the same character for compressive strain, while changing into the z2 − 1 character for tensile strains. While Q1 and Q3 are fixed by the strain components "xx and "zz in our model, the magnitude of the in-plane distortion mode (Q2), which varies to minimize the total energy, slowly diminishes with tensile strain, completely disappearing as the FM state is entered. Within our model, the FM state is metallic, while the three AFM states are insulating.
URI: http://hdl.handle.net/10355/7216

This item appears in the following Collection(s)

[+] show full item record