Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2019 Dissertations (MU)
    • 2019 MU dissertations - Access restricted to MU
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2019 Dissertations (MU)
    • 2019 MU dissertations - Access restricted to MU
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Large-scale soybean genome-wide variation workflow and association analysis using deep learning

    Liu, Yang
    View/Open
    [PDF] LiuYang.pdf (4.673Mb)
    Date
    2019
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] With the advances in next-generation sequencing technology and significant reduction in sequencing costs, it is now possible to sequence large collections of germplasm in crops for detecting genome-scale genetic variations, and apply the knowledge towards improvements in traits. To facilitate large-scale NGS resequencing data analysis of genomic variations efficiently, we developed a systematic solution using high-performance computing environment, cloud data storage resources and graphics processing unit computing with cutting-edge deep learning approach. The solution contains an integrated and optimized variant calling workflow called 'PGen', a quantitative phenotype prediction model using convolutional neural network and an algorithm to study genome-wide association study based on deep convolutional neural network model. We reviewed and compared studies of statistical and deep learning genomic selection and genome-wide association methods, present our work on thousands of lines of soybean sequencing dataset, summarized ongoing progress of large-scale genome-associated studies and discussed the future work and development.
    URI
    https://hdl.handle.net/10355/72186
    Degree
    Ph. D.
    Thesis Department
    Informatics (MU)
    Rights
    Access to files is limited to the University of Missouri--Columbia.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2019 MU dissertations - Access restricted to MU
    • Health Management and Informatics electronic theses and dissertations (MU)
    • Electrical Engineering and Computer Science electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems