Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Fermi hypernetted-chain study of half-filled Landau levels with broken rotational symmetry

    Ciftja, Orion
    Wexler, Carlos, 1966-
    View/Open
    [PDF] FermiHypernettedChainStudy.pdf (131.3Kb)
    Date
    2002
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    We investigate broken rotational symmetry (BRS) states at half-filling of the valence Landau level (LL). We generalize Rezayi and Read's (RR) trial wave function, a special case of Jain's composite fermion (CF) wave functions, to include anisotropic coupling of the flux quanta to electrons, thus generating a nematic order in the underlying CF liquid. Using the Fermi hypernetted-chain method, which readily gives results in the thermodynamic limit, we determine the properties of these states in detail. By using the anisotropic pair distribution and static structure functions we determine the correlation energy and find that, as expected, RR's state is stable in the lowest LL, whereas BRS states may occur at half- filling of higher LL's, with a possible connection to the recently discovered quantum Hall liquid crystals.
    URI
    http://hdl.handle.net/10355/7242
    Citation
    Phys. Rev. B 65, 205307 (2002)
    Collections
    • Physics and Astronomy publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems