[-] Show simple item record

dc.contributor.advisorHolan, Scott H.eng
dc.contributor.advisorMicheas, Athanasios C.eng
dc.contributor.authorHassett, Christophereng
dc.date.issued2019eng
dc.date.submitted2019 Springeng
dc.description.abstract[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] We consider non-homogeneous pairwise interaction point process models, where the global and local effect functions are modeled using basis function expansions. For data with interaction between points, we use an ordered exponential prior on the interaction coefficients. For data without interaction we use independent normal priors. The basis coefficients are estimated in a Bayesian framework where we use the double Metropolis-Hastings algorithm. The corresponding hyperparameters can be drawn using a Gibbs sampler. The proposed methodology is exemplified through simulation and through locations of waterstriders and locations of forest fires from the waterstriders dataset and the clmfires dataset, respectively, both from the spatstat R package (Baddeley et al., 2015). The model is then extended to allow for the inclusion of covariates. The methodology is illustrated using the location of kidnappings in a selected area in the southern region of Chicago for 2015, where we include as covariate information the American Community Survey 5-year period estimate of median income at the Census tract level.eng
dc.description.bibrefIncludes bibliographical referenceseng
dc.format.extentxxiv, 145 pages : illustrationeng
dc.identifier.urihttps://hdl.handle.net/10355/73823
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsAccess to files is limited to the University of Missouri--Columbia.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.subject.otherMathematicseng
dc.titleModeling gibbs point processes through basic function decompositionseng
dc.typeThesiseng
thesis.degree.disciplineStatistics (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]

This item appears in the following Collection(s)

[-] Show simple item record