Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2019 Dissertations (MU)
    • 2019 MU dissertations - Access restricted to MU
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2019 Dissertations (MU)
    • 2019 MU dissertations - Access restricted to MU
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    The role of the vasculature in iron allocation and sensing in plants

    Nguyen, Nga Thu
    View/Open
    [PDF] NguyenNga.pdf (7.017Mb)
    Date
    2019
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Most of the human population rely on plant-based products as the major dietary source for nutrients including iron (Fe). In terms of food security, and besides struggling to solve the problem of producing enough food for the rapidly growing population, we are also in need of finding solutions to fight the so-called "hidden hunger" or micronutrient deficiencies. Among the different micronutrient deficiencies, Fe is the most studied one in both plants and humans (1). This is because Fe serves as a cofactor in many critical biological processes and cellular redox reactions. Plants also require Fe for the synthesis of chlorophyll. Thus, Fe deficiency can lead to plant chlorosis and reduction in yield as a result of a decreased photosynthetic capacity. In crop plants like soybean, Fe deficiency chlorosis can cause up to 30% reduction in yield (2-4). In humans, Fe is required for hemoglobin molecules to transport oxygen. Lack of Fe in humans leads to anemia and it is a major cause for birth defects and many physical and mental illnesses. This is true not only in developing countries, where people mostly rely on plant-based food. In developed countries, Fe-deficiency anemia can also affect people whose diets heavily rely on highly processed foods, which are energy dense and micronutrient-poor. By number, moderate to severe anemia in the U.S. population increased from 1.0% to 1.9%, comparing data of 2003-2004 to 2011-2012 census (5). Because Fe is essential for both plants and humans and importantly, humans rely on dietary Fe from crop plants, understanding the mechanisms controlling Fe uptake, accumulation and Fe-deficiency response in plants may have a positive impact on both plants and human health. For this long-term goal, it is necessary to develop and establish different approaches to unravel the mechanisms that plants use to control iron uptake and allocation. By filling the gap in our knowledge of plant responses to Fe-deficiency, we will be one step closer to enhance the Fe concentration in crop plants and perhaps, we will make them more resilient to Fe-limiting conditions.
    URI
    https://hdl.handle.net/10355/73826
    https://doi.org/10.32469/10355/73826
    Degree
    Ph. D.
    Thesis Department
    Plant sciences (MU)
    Rights
    Access to files is limited to the University of Missouri--Columbia.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • Plant Sciences electronic theses and dissertations (MU)
    • 2019 MU dissertations - Access restricted to MU

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems