Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2020 Dissertations (UMKC)
    • 2020 UMKC Dissertations - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2020 Dissertations (UMKC)
    • 2020 UMKC Dissertations - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Cooperative wireless relay networks and the impact of fade duration

    Gebremichail, Aklilu Assefa
    View/Open
    [PDF] Cooperative Wireless Relay Networks and the Impact of Fade Dura-tion (2.776Mb)
    Date
    2020
    Metadata
    [+] Show full item record
    Abstract
    In wireless communication networks, the Key Performance Indicator (KPI) parameters are mostly based on the average signal-to-noise ratio (SNR). Other parameters such as site selection during call initiation, handoff, relay selection etc., are all based on SNR. SNR has been commonly used as a benchmark and has masked the real picture of the wireless network. In some instances, it might be misleading. This is mainly due to the fact that rapid fluctuation of the signal (i.e., fading) is not taken into account in the selection criteria. Such rapid signal change may cause significant loss of information, degrade signal quality for voice or video connections, or could make the channel coding fail. An alternative method to using SNR in a wireless network is to consider fading. Such parameters include average fade duration (AFD) and fade duration outage probability (FDOP), which are based on time correlation statistics. Both the AFD and the FDOP are computed in reference to a threshold value for signal quality. The main purpose of this dissertation work is to apply FDOP and AFD in broad wireless network applications and show that such methods need to be used in 5G and beyond wireless communication. The specific applications that are studied are cooperative relaying, neighbor cell list, and femtocell sleep mode activation. In all of those applications, the use of fade duration is novel. Because fade duration methods more accurately control the fading nature and the true quality of the signal, its application is vital to get the true nature of quality of service performance in wireless communication networks.
    Table of Contents
    Introduction -- Multi-hop relay selection based on fade durations -- Fade duration based neighbor cell list optimization for handover in femtocell networks -- Fade duration based sleep mode activation in dense Femtocell cluster -- Conclusions and future work
     
    ix, 81 pages
     
    URI
    https://hdl.handle.net/10355/74000
    Degree
    Ph.D. (Doctor of Philosophy)
    Thesis Department
    Computer Networking and Communication Systems (UMKC)
     
    Electrical and Computer Engineering (UMKC)
     
    Collections
    • Computer Science and Electrical Engineering Electronic Theses and Dissertations (UMKC)
    • 2020 UMKC Dissertations - Freely Available Online

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems