Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Faculty Research, Scholarship, and Creative Works (MU)
    • Faculty Research, Scholarship, and Creative Works (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Faculty Research, Scholarship, and Creative Works (MU)
    • Faculty Research, Scholarship, and Creative Works (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    GmBZL3 acts as a major BR signaling regulator through crosstalk with multiple pathways in Glycine max

    Song, L.
    Chen, W.
    Wang, B.
    Yao, Q. -M.
    Valliyodan, B.
    Bai, M. -Y.
    Zhao, M. -Z.
    Ye, H.
    Wang, Z. -Y.
    Nguyen, H. T.
    View/Open
    [PDF] Nguyen.pdf (2.480Mb)
    Date
    2019
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    Background: Brassinosteroids (BRs) play a crucial role in plant vegetative growth and reproductive development. The transcription factors BZR1 and BES1/BZR2 are well characterized as downstream regulators of the BR signaling pathway in Arabidopsis and rice. Soybean contains four BZR1-like proteins (GmBZLs), and it was reported that GmBZL2 plays a conserved role in BR signaling regulation. However, the roles of other GmBZLs have not been thoroughly studied, and the targets of GmBZLs in soybean remain unclear. Results: In this study, we first characterized GmBZL3 in soybean from gene expression patterns, conserved domains in coding sequences, and genomic replication times of four GmBZL orthologous. The results indicated that GmBZL3 might play conserved roles during soybean development. The overexpression of GmBZL3 P219L in the Arabidopsis BR-insensitive mutant bri1-5 partially rescued the phenotypic defects including BR-insensitivity, which provides further evidence that GmBZL3 functions are conserved between soybean and the homologous Arabidopsis genes. In addition, the identification of the GmBZL3 target genes through ChIP-seq technology revealed that BR has broad roles in soybean and regulates multiple pathways, including other hormone signaling, disease-related, and immunity response pathways. Moreover, the BR-regulated GmBZL3 target genes were further identified, and the results demonstrate that GmBZL3 is a major transcription factor responsible for BR-regulated gene expression and soybean growth. A comparison of GmBZL3 and AtBZR1/BES1 targets demonstrated that GmBZL3 might play conserved as well as specific roles in the soybean BR signaling network. Finally, the identification of two natural soybean varieties of the GmBZL3 mutantion by SNP analysis could facilitate the understanding of gene function during soybean development in the future. Conclusions: We illustrate here that GmBZL3 orchestrates a genome-wide transcriptional response that underlies BR-mediated soybean early vegetative growth, and our results support that BRs play crucial regulatory roles in soybean morphology and gene expression levels.
    URI
    https://hdl.handle.net/10355/74583
    https://dx.doi.org/10.1186/s12870-019-1677-2
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution 4.0 License.
    https://creativecommons.org/licenses/by/4.0
    Collections
    • Plant Sciences publications (MU)
    • Faculty Research, Scholarship, and Creative Works (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems