Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2019 Dissertations (MU)
    • 2019 MU dissertations - Access restricted to UM
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2019 Dissertations (MU)
    • 2019 MU dissertations - Access restricted to UM
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Imaging structural and mechanical properties of articular cartilage using optical polarization tractography

    Ravanfar, Mohammadreza
    View/Open
    [PDF] RavanfarMohammadreza.pdf (5.127Mb)
    Date
    2019
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Osteoarthritis (OA) is an extremely common joint disease, which affects more than one-third of all adults in the USA. Although the entire joint compartments are involved, OA is considered as a cartilage disease. Articular cartilage is a thin tissue covering the end of bones in the diarthrodial joints and plays a crucial role in providing a frictionless articulation. In spite of the harsh mechanical environment, cartilage has an amazingly long life due to its unique structure and composition. Cartilage is composed of ~80% water and ~20% solid matrix that mainly consists of collagen fibers and proteoglycans. Collagen degeneration is often an early symptom in OA. Since the fiber structure governs normal functionality in cartilage, the disease progression leads to impaired mechanical functions. Hence, an effective imaging technology that can visualize the collagen organization and its effects on cartilage mechanical properties will help to understand the sophisticated structure-function relationship in cartilage. Polarized light macroscopy (PLM) has been broadly utilized for collagen assessment; however, it requires thin, sectioned samples and thus remains a destructive technology. We introduced a nondestructive alternative to PLM for cartilage imaging using optical polarization tractography (OPT). OPT improved visualization and characterization of the zonal structure in cartilage by calculating the depth-resolved local birefringence and fiber orientation. We demonstrated that parametric imaging can be implemented using multiple complementary tissue contrasts obtained in OPT including surface roughness, birefringence, and fiber dispersion. We showed that parametric OPT imaging provided a morphometric evaluation of collagen damage in human OA cartilage samples. Because OPT can accurately quantify tissue optical birefringence, it can reveal the higher level of complexity in collagen architecture of cartilage. Our multi-incident OPT based biaxial birefringence measurement provided strong evidence of the existence of a leaf-like structure in cartilage. Furthermore, we expanded the capability of OPT technology by developing a method that can simultaneously image the fiber organization and mechanical responses in cartilage. This new method enabled a precise characterization of the zonal structural and mechanical responses to unconfined compressive and directional shear loading. We discovered that the upper part of the radial zone plays a critical role in absorbing compression-induced deformation in cartilage. Young's modulus in cartilage was strongly correlated with the optical birefringence. In the shear test, we found a remarkably higher shear modulus in the radial zone when the sample was sheared along the fibers. In summary, this dissertation research developed new OPT based imaging methods that can fully characterize the collagen organization and its responses during mechanical loading. This new technology has a great potential for nondestructive structural and functional imaging in articular cartilage.
    URI
    https://hdl.handle.net/10355/76166
    https://doi.org/10.32469/10355/76166
    Degree
    Ph. D.
    Thesis Department
    Biological engineering (MU)
    Rights
    Access is limited to the campuses of the University of Missouri
    Collections
    • Biological Engineering electronic theses and dissertations - CAFNR (MU)
    • Biological Engineering electronic theses and dissertations - Engineering (MU)
    • 2019 MU dissertations - Access restricted to UM

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems