Reliable service chain orchestration for scalable data-intensive computing at infrastructure edges
Loading...
Authors
Meeting name
Sponsors
Date
Journal Title
Format
Thesis
Subject
Abstract
In the event of natural or man-made disasters, geospatial video analytics is valuable to provide situational awareness that can be extremely helpful for first responders. However, geospatial video analytics demands massive imagery/video data 'collection' from Internet-of-Things (IoT) and their seamless 'computation/consumption' within a geo-distributed (edge/core) cloud infrastructure in order to cater to user Quality of Experience (QoE) expectations. Thus, the edge computing needs to be designed with a reliable performance while interfacing with the core cloud to run computer vision algorithms. This is because infrastructure edges near locations generating imagery/video content are rarely equipped with high-performance computation capabilities. This thesis addresses challenges of interfacing edge and core cloud computing within the geo-distributed infrastructure as a novel 'function-centric computing' paradigm that brings new insights to computer vision, edge routing and network virtualization areas. Specifically, we detail the state-of-the-art techniques and illustrate our new/improved solution approaches based on function-centric computing for the two problems of: (i) high-throughput data collection from IoT devices at the wireless edge, and (ii) seamless data computation/consumption within the geo-distributed (edge/core) cloud infrastructure. To address (i), we present a novel deep learning-augmented geographic edge routing that relies on physical area knowledge obtained from satellite imagery. To address (ii), we describe a novel reliable service chain orchestration framework that builds upon microservices and utilizes a novel 'metapath composite variable' approach supported by a constrained-shortest path finder. Finally, we show both analytically and empirically, how our geographic routing, constrained shortest path finder and reliable service chain orchestration approaches that compose our function-centric computing framework are superior than many traditional and state-of-the-art techniques. As a result, we can significantly speedup (up to 4 times) data-intensive computing at infrastructure edges fostering effective disaster relief coordination to save lives.
Table of Contents
DOI
PubMed ID
Degree
Ph. D.
Thesis Department
Rights
OpenAccess.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
