Ambipolar spin diffusion and D'yakonov-Perel' spin relaxation in GaAs quantum wells

MOspace/Manakin Repository

Breadcrumbs Navigation

Ambipolar spin diffusion and D'yakonov-Perel' spin relaxation in GaAs quantum wells

Please use this identifier to cite or link to this item: http://hdl.handle.net/10355/7671

[+] show full item record


Title: Ambipolar spin diffusion and D'yakonov-Perel' spin relaxation in GaAs quantum wells
Author: Hao, Zhui; Mower, Matthew D.; Vignale, Giovanni, 1957-
Keywords: spin polarized transport in semiconductors
optical creation of spin polarized carriers
spin relaxation and scattering
Date: 2009-03-27
Publisher: American Physical Society
Citation: Phys. Rev. B 79, 115321 (2009) [9 pages]
Abstract: We report theoretical and experimental studies of ambipolar spin diffusion in a semiconductor. A circularly polarized laser pulse is used to excite spin-polarized carriers in a GaAs multiple quantum-well sample at 80 K. Diffusion of electron and spin densities is simultaneously measured using a spatially and temporally resolved pump-probe technique. Two regimes of diffusion for spin-polarized electrons are observed. Initially, the rate of spin diffusion is similar to that of density diffusion and is controlled by the ambipolar diffusion coefficient. At later times, the spin diffusion slows down considerably relative to the density diffusion and appears to be controlled by a nonconstant (decreasing) spin-diffusion coefficient. We suggest that the long-time behavior of the spin density can be understood in terms of an inhomogeneous spin-relaxation rate, which grows with decreasing density. The behavior of the spin-relaxation rate is consistent with a model of D'yakonov-Perel' relaxation limited by the Coulomb scattering between carriers.
URI: http://hdl.handle.net/10355/7671
ISSN: 1098-0121

This item appears in the following Collection(s)

[+] show full item record