[-] Show simple item record

dc.contributor.advisorIslam, Syed Kamruleng
dc.contributor.authorShamsir, Samiraeng
dc.date.issued2020eng
dc.date.submitted2020 Summereng
dc.description.abstractWide bandgap (WBG) semiconductors such as GaN and SiC are emerging as promising alternatives to Si for new generation of high efficiency power devices. GaN has attracted a lot of attention recently because of its superior material properties leading to potential realization of power transistors for high power, high frequency, and high temperature applications. In order to utilize the full potential of GaN-based power transistors, proper device modeling is essential to verify its operation and improve the design efficiency. In this view, this research work presents modeling and characterization of GaN transistors for high power and high temperature applications. The objective of this research work includes three key areas of GaN device modeling such as physics-based analytical modeling, device simulation with numerical simulator and electrothermal SPICE model for circuit simulation. The analytical model presented in this dissertation enables understanding of the fundamental physics of this newly emerged GaN device technology to improve the operation of existing device structures and to optimize the device configuration in the future. The numerical device simulation allows to verify the analytical model and study the impact of different device parameters. An empirical SPICE model for standard circuit simulator has been developed and presented in the dissertation which allows simulation of power electronic circuits employing GaN power devices. The empirical model provides a good approximation of the device behavior and creates a link between the physics-based analytical model and the actual device testing data. Furthermore, it includes an electrothermal model which can predict the device behavior at elevated temperatures as required for high temperature applications.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.format.extent1 online resource (xi, 90 pages) ; Illustrationseng
dc.identifier.urihttps://hdl.handle.net/10355/79491
dc.identifier.urihttps://doi.org/10.32469/10355/79491eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Copyright held by author.
dc.subject.otherEngineeringeng
dc.titleModeling of gallium nitride transistors for high power and high temperature applicationseng
dc.typeThesiseng
thesis.degree.disciplineElectrical and computer engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]

This item appears in the following Collection(s)

[-] Show simple item record