Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2019 Dissertations (MU)
    • 2019 MU dissertations - Access restricted to UM
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2019 Dissertations (MU)
    • 2019 MU dissertations - Access restricted to UM
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Insights into atomic orbital polarization in polyatomic dissociation from DC slide velocity map imaging

    Weeraratna, Hashini Chaya
    View/Open
    [PDF] WeeraratnaHashini.pdf (13.91Mb)
    Date
    2019
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] "The field of chemical reaction dynamics is based upon understanding the details of elementary chemical reactions. It seeks to answer fundamental questions such as, what pathways does the reaction follow? what product states are formed? what determines the energy disposal, and the angular distributions of the products? State-of-the-art experimental methods developed over time along with theoretical techniques and advanced computational methods provide a toolset to address these questions. Achieving deep insight into reaction mechanisms ultimately permits the control over their chemical reactivity. One way of apprehending these processes is to characterize the potential energy surface (PES) since they completely embody the forces between the constituent atoms. .. Photodissociation of small molecules has been studied using variety of detection methods, such as, photofragment translational spectroscopy, [4,5] Laser-induced fluorescence (LIF), [6] Doppler-related methods, [7] Rydberg tagging, [8,9] photofragment ion imaging [10] and photoelectron imaging. [11] Photofragment imaging is now the most widely used method to study photodissociation dynamics. In the simplest illustration, it maps the recoil velocity distribution of the state selected product onto a position sensitive detector plane and energy and the angular distributions information are extracted by reconstruction of the experimentally observed images. The main objective of the this work is to study the vector correlations of photodissociation using photofragment ion imaging technique."--Introduction.
    URI
    https://hdl.handle.net/10355/79802
    https://doi.org/10.32469/10355/79802
    Degree
    Ph. D.
    Thesis Department
    Chemistry (MU)
    Rights
    Access to files is restricted to the campuses of the University of Missouri.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Copyright held by author.
    Collections
    • Chemistry electronic theses and dissertations (MU)
    • 2019 MU dissertations - Access restricted to UM

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems