[-] Show simple item record

dc.contributor.advisorZhang, Yuwen, 1965-eng
dc.contributor.advisorChen, Jinn-Kueneng
dc.contributor.authorYang, Lingqieng
dc.date.issued2010eng
dc.date.submitted2010 Springeng
dc.descriptionTitle from PDF of title page (University of Missouri--Columbia, viewed on June 21, 2010).eng
dc.descriptionThe entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.eng
dc.descriptionThesis advisor: Dr. Yuwen Zhang and Dr. Jinn-Kuen Chen.eng
dc.descriptionM. S. University of Missouri--Columbia 2010.eng
dc.description.abstractIn this thesis, two scenarios of simulations are studied by molecular dynamics (MD) method. The first one will investigate the neck growth in the laser sintering of different-size gold (100) nanoparticles under different heating rates. The numerical simulations are carried out for four pairs of two spherical nanoparticles where one particle has the same diameter of 4 nm and the other one varied from 4 nm to 20 nm. The results show that the stable neck width increases as the size of the other nanoparticle increases. Once the limit stable neck width is reached, it no longer is affected by the nanoparticle size. For the subsequent laser heating to the same final temperature, a lower heating rate results in a larger stable neck width due to the longer sintering process. The other one will study the deposition of Ni(100) nanocluster with zero initial kinetic energy on Cu(100, 110) surface. It's found that the burrowing process goes extremely slow as temperature is equal or less than 900K. There is no burrowing below 500 K. The completeness of burrowing Ni on Cu(110) is earlier than Cu(100) due to the lower surface energy of Cu(110). Vacancy migration is found to be the main cause of the site-exchange of atoms between Ni cluster and Cu substrate.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.format.extentix, 56 pageseng
dc.identifier.merlinb79480962eng
dc.identifier.oclc649462615eng
dc.identifier.urihttp://hdl.handle.net/10355/8086
dc.identifier.urihttps://doi.org/10.32469/10355/8086eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.subject.lcshPowder metallurgyeng
dc.subject.lcshSinteringeng
dc.subject.lcshNanoparticleseng
dc.subject.lcshNanocrystalseng
dc.titleMolecular dynamics simulation of nanosintering processeseng
dc.typeThesiseng
thesis.degree.disciplineMechanical and aerospace engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelMasterseng
thesis.degree.nameM.S.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record