[-] Show simple item record

dc.contributor.advisorMehdizadeh, Amirfarhang
dc.contributor.advisorBani-Yaghoub, Majid
dc.contributor.authorZiefuss, Matthias
dc.date.issued2020
dc.date.submitted2020 Fall
dc.descriptionDissertation advisors: Amirfarhang Mehdizadeh and Majid Bani-Yaghoub
dc.descriptionVita
dc.descriptionIncludes bibliographical references (page 159-175)
dc.descriptionThesis (Ph.D.)--School of Computing and Engineering, Department of Mathematics and Statistics. University of Missouri--Kansas City, 2020
dc.descriptionTitle from PDF of title page viewed January 31, 2022
dc.description.abstractHeat transfer modeling plays an integral role in optimization and development of highly efficient modern thermal-fluid systems. However, currently available heat flux models suffer from fundamental shortcomings. For example, their development is based on the general notion that an accurate prediction of the flow field will guarantee an appropriate prediction of the thermal field, as the Reynolds Analogy does. Furthermore, literature about advanced models that aim to overcome this notion, does not provide reliable information about prediction capabilities. These advanced models can be separated into two distinct heat flux model categories, namely the implicit and explicit models. Both model categories differ fundamentally in their mathematical and physical formulation. Hence, this dissertation presents a comprehensive assessment of the Reynolds Analogy regarding steady and unsteady calculations. It further analyses the entropy generation capability in detail and evaluates the prediction accuracy of implicit and explicit models when applied to turbulent shear flows of fluids with different Prandtl numbers. Moreover, the implicit and explicit models are modified such that important thermal second order statistics are included. This enables deeper insight into the mechanics of thermal dissipation and delivers a better understanding towards the sensitivity and reliability of predictions using heat flux models. Finally, to overcome the shortcomings of the Reynolds Analogy in unsteady calculations, an anisotropic extension is proposed. This dissertation shows that even for first order statistics within steady state calculations, the Reynolds Analogy is only appropriate for fluids with Prandtl numbers around unity. For second order statistics within unsteady simulations, the Reynolds Analogy could provide acceptable results only if an appropriate grid design/resolution is provided that allows resolving essential dynamics of the thermal field. Concerning entropy generation, the Reynolds Analogy provides acceptable results only for mean entropy generation, while it fails to predict entropy generation at small/sub-grid scales. The anisotropic extension of the Reynolds Analogy is a promising approach to overcome these shortcomings. Furthermore and concerning the implicit and explicit heat flux models, this work shows that only the explicit framework is potentially capable of dealing with complex turbulent thermal fields and to address longstanding shortcomings of currently available models, if the flow field is predicted accurately. Moreover, it has been shown that thermal time scale plays an integral role to predict thermal phenomena, particularly those of fluids with low/high Pr numbers.
dc.description.tableofcontentsIntroduction -- A comprehensive Assessment of the Reynolds Analogy in Predicting Heat Transfer in Turbulent Wall-Bounded Shear Flows -- Entropy Generation Assessment for Wall-Bounded Turbulent Shear Flows Based on Reynolds Analogy Assumptions -- An Assessment pf the Reynolds Analogy in Predicting Heat Transfer in Turbulent Flows of Low Prandtl Numbers -- A Wall-Adapted Anisotropic Heat Flux Model for Large Eddy Simulations of Complex Turbulent Thermal Flows -- Towards Identification and Development of a Reliable Framework to Predict the Thermal Field in Turbulent Wall-Bounded Shear Flow -- Conclusion and Outlook
dc.format.extentxvi, 176 pages
dc.identifier.urihttps://hdl.handle.net/10355/80943
dc.subject.lcshHeat -- Transmission -- Mathematical models
dc.subject.lcshShear flow
dc.subject.lcshReynolds analogy
dc.subject.otherDissertation -- University of Missouri-Kansas City -- Engineering
dc.subject.otherDissertation -- University of Missouri-Kansas City -- Mathematics
dc.titleIdentification and Development of a Reliable Framework to Predict Passive Scalar Transport for Turbulent Bounded Shear Flows
thesis.degree.disciplineMechanical Engineering (UMKC)
thesis.degree.disciplineMathematics (UMKC)
thesis.degree.grantorUniversity of Missouri--Kansas City
thesis.degree.levelDoctoral
thesis.degree.namePh.D. (Doctor of Philosophy)


Files in this item

[PDF]

This item appears in the following Collection(s)

[-] Show simple item record