Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Pressure tuning of strains in semiconductor heterostructures: (ZnSe epilayer)/(GaAs epilayer)

    Rockwell, Benjamin A.
    Chandrasekhar, Holalkere R.
    Chandrasekhar, Meera
    Ramdas, A. K.
    Kobayashi, M.
    Gunshor, R. L.
    View/Open
    [PDF] PressureTuningStrainsSemiconductorHeterostructures.pdf (1.215Mb)
    Date
    1991
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    The heavy-hole and light-hole excitons of a pseudomorphic ZnSe film grown on a GaAs epilayer by molecular-beam epitaxy, are studied as a function of applied hydrostatic pressure using photomodulated reflectance spectroscopy. At ambient pressure, the signature in the spectrum due to the heavy-hole exciton occurs at an energy lower than that of the light-hole exciton, a consequence of the compressive biaxial strain in ZnSe due to its lattice mismatch with GaAs. As the pressure is increased, the two signatures approach each other in energy and coalesce at 36.2 kbar. The difference in the compressibility of ZnSe from that of GaAs generates a tensile strain that progressively compensates the lattice-mismatch-induced compressive strain and finally, at 36.2 kbar, the heterostructure is strain free. Beyond this pressure, the strain in ZnSe transforms from biaxial compression to biaxial tension, the light-hole signature now occurring at the lower energy. The transformation of strains via pressure tuning is continuous and reversible. The separation between the heavy-hole and light-hole signatures is superlinear in pressure, suggestive of a pressure-dependent shear-deformation-potential constant.
    URI
    http://hdl.handle.net/10355/8167
    Citation
    Phys. Rev. B 44, 11307-11314 (1991)
    Collections
    • Physics and Astronomy publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems