Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Engineering (MU)
    • Department of Electrical Engineering and Computer Science (MU)
    • Electrical Engineering and Computer Science publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Engineering (MU)
    • Department of Electrical Engineering and Computer Science (MU)
    • Electrical Engineering and Computer Science publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Sub-2 nm Size-Tunable High-Density Pt Nanoparticle Embedded Nonvolatile Memory

    Yun, Minseong, 1978-
    Mueller, David W.
    Hossain, Maruf
    Misra, Veena
    Gangopadhyay, Shubhra
    View/Open
    [PDF] Sub2NmSizeTunableHighDensity.pdf (250.3Kb)
    Date
    2009-12
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    The charge-storage characteristics of a metal-oxide-semiconductor (MOS) structure containing size-tunable sub-2 nm Pt nanoparticles (NPs) between Al2O3 tunneling and capping oxide layers were studied. Significantly different amounts of memory window were obtained with the different sizes of Pt NP embedded MOS structures and reached a maximum of 4.3 V using a 1.14 nm Pt NP, which has the strongest charging capability caused by optimum size and the largest particle density obtained in our deposition method. Satisfactory long-term nonvolatility was attained in a low electric field due to the Coulomb blockade and quantum confinement effects in ~ 1 nm Pt NP. These properties are very promising in view of device application.
    URI
    http://hdl.handle.net/10355/8192
    Part of
    Electrical and Computer Engineering publications (MU)
    Citation
    IEEE ELECTRON DEVICE LETTERS, VOL. 30, NO. 12, DECEMBER 2009 1362-1364
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • Electrical Engineering and Computer Science publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems