Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Engineering (MU)
    • Department of Electrical Engineering and Computer Science (MU)
    • Electrical Engineering and Computer Science publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Engineering (MU)
    • Department of Electrical Engineering and Computer Science (MU)
    • Electrical Engineering and Computer Science publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Characterization of porous low-k films using variable angle spectroscopic ellipsometry

    Othman, Maslin, 1977-
    Lubguban, J. A.
    Lubguban, Arnold A.
    Gangopadhyay, Shubhra
    Miller, R. D.
    Volksen, W.
    Kim, H.-C.
    View/Open
    [PDF] CharacterizationPorousLowKFilms.pdf (140.7Kb)
    Date
    2006
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    Variable angle spectroscopic ellipsometry (VASE™) is used as a tool to characterize properties such as optical constant, thickness, refractive index depth profile, and pore volume fraction of single and bilayer porous low-k films. The porous films were prepared using sacrificial pore generator (porogen) approach. Two sets of porous films with open- and closed-pore geometries were measured. Three models were used for data analysis: Cauchy, Bruggeman effective medium approximation (BEMA), and graded layer. Cauchy, a well-known model for transparent films, was used to obtain thickness and optical constant, whereas BEMA was utilized to calculate the pore volume fraction from the ellipsometric data. The Cauchy or BEMA models were then modified as graded layers, resulting in a better fit and a better understanding of the porous film. The depth profile of the porous film implied a more porous layer at the substrate-film interface. We found 3%-4% more porosity at the interface compared with the bulk for both films. This work shows that VASE™, a nondestructive measurement tool, can be used to characterize single- and multigraded layer porous films quickly and effectively.
    URI
    http://hdl.handle.net/10355/8203
    Part of
    Electrical and Computer Engineering publications
    Citation
    J. Appl. Phys. 99, 083503 (2006)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • Electrical Engineering and Computer Science publications (MU)
    • Physics and Astronomy publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems