Initial growth of interfacial oxide during deposition of HfO2 on silicon
Abstract
Interfacial chemistry of Hf∕Si, HfO2∕SiO2∕Si, and HfO2∕Si is investigated by x-ray photoelectron spectroscopy in order to understand the interfacial layer formation mechanism. Deposition of Hf and HfO2 films was carried out on Si wafers by electron-beam evaporation with oxygen backfill. We show that the interfacial layer formation takes place predominantly at the initial stage of the HfO2 film deposition. Temporary direct bonding between Hf metal and Si is proposed to be the source of the catalytic reaction resulting in formation of interfacial layer. Formation of interfacial layer was suppressed by chemically grown thin oxide blocking the direct Si-Hf bonding. We also demonstrate reduced interfacial layer after modified Shiraki surface etch, compared to the Radio Corporation of America clean. This indicates that a more complete hydrogen termination and atomically smoother surface can delay the onset of interfacial layer formation.
Citation
Appl. Phys. Lett. 85, 215 (2004)
Rights
OpenAccess.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.