Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2010 Dissertations (MU)
    • 2010 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2010 Dissertations (MU)
    • 2010 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Finite point configurations and projection theorems in vector spaces over finite fields

    Chapman, Jeremy Michael, 1982-
    View/Open
    [PDF] public.pdf (1.560Kb)
    [PDF] short.pdf (35.76Kb)
    [PDF] research.pdf (238.8Kb)
    Date
    2010
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    We study a variety of combinatorial distance and dot product related problems in vector spaces over finite fields. First, we focus on the generation of the Special Linear Group whose elements belong to a finite field with q elements. Given A [subset of] Fq, we use Fourier analytic methods to determine how large A needs to be to ensure that a certain product set contains a positive proportion of all the elements of SL₂(Fq). We also study a variety of distance and dot product sets related to the Erd̋os-Falconer distance problem. In general, the Erd̋os-Falconer distance problem asks for the number of distances determined by a set of points. The classical Erdős distance problem asks for the minimal number of distinct distances determined by a finite point set in Rd, where d [is reducible to] 2. The Falconer distance problem, which is the continuous analog of the Erd̋os distance problem, asks to find s₀ [greater than] 0 such that if the Hausdorff dimension of E is greater than s₀, then the Lebesgue measure of [symmetric difference] (E) is positive. A generalization of the Erdős-Falconer distance problem in vector spaces over finite fields is to determine the minimal [alpha] [greater than] 0 such that E contains a congruent copy of every k dimensional simplex whenever [E] [almost equal to] q [alpha]. We improve on known results (for k [greater than] 3) using Fourier analytic methods, showing that [alpha] may be taken to be d+k2 . If E is a subset of a sphere, then we get a stronger result which shows that [alpha] may be taken to be d+k -1 [over] 2.
    URI
    https://hdl.handle.net/10355/8285
    https://doi.org/10.32469/10355/8285
    Degree
    Ph. D.
    Thesis Department
    Mathematics (MU)
    Rights
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2010 MU dissertations - Freely available online
    • Mathematics electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems