Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Synchrotron x-ray-diffraction study of the structure and growth of Xe films adsorbed on the Ag(111) surface

    Dai, Pengcheng, 1963-
    Wu, Z.
    Angot, T.
    Wang, S. -K.
    Taub, Haskell
    View/Open
    [PDF] SynchotronXRayDiffractionStudy.pdf (248.9Kb)
    Date
    1999
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    Synchrotron x-ray scattering has been used to investigate the structure and growth of perhaps the simplest of all films: xenon physisorbed on the Ag(111) surface. High-resolution x-ray scans of the in-plane structure and lower-resolution scans (specular and nonspecular) of the out-of-plane order were performed. The Xe films were prepared under both quasiequilibrium and kinetic growth conditions, and have fewer structural defects than those investigated previously by others on graphite substrates. Under quasiequilibrium conditions, the bulk Xe-Xe spacing is reached at monolayer completion, and the monolayer and bilayer lattice constants at coexistence are inferred equal to within 0.005 Å, consistent with theoretical calculations. The Xe/vacuum interface profile for a complete monolayer and bilayer grown at quasiequilibrium is found to be sharper than for kinetically grown films. At coverages above two layers, diffraction scans along the Xe(01l) rod for quasiequilibrated films are consistent with the presence of two domains having predominantly an ABC stacking sequence and rotated 60° with respect to each other about the surface normal. Annealing of these films alters neither the population of the two domains nor the fraction of ABA stacking faults. The thickest film grown under quasiequilibrium conditions exceeds 220 Å (resolution limited). Under kinetic growth conditions, x-ray intensity oscillations at the Xe anti-Bragg position of the specular rod are observed as a function of time, indicating nearly layer-by-layer growth. Up to four complete oscillations corresponding to a film of eight layers have been observed before the intensity is damped out; the number of oscillations is found to depend on the substrate temperature, the growth rate, and the quality of the Ag(111) substrate. The specular reflectivity from kinetically grown films at nominal coverages of three and four layers has been analyzed using a Gaussian model which gives a film thickness standard deviation of 0.5 and 1.0 layers, respectively. Diffraction scans along the Xe(01l) rod of these films indicate a larger fraction of ABA stacking faults than found for thicker films. These results demonstrate the difficulty of kinetically growing Xe films thicker than two layers which have an ideal slab geometry.
    URI
    http://hdl.handle.net/10355/8766
    Citation
    Phys. Rev. B 59, 15464-15479 (1999)
    Collections
    • Physics and Astronomy publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems