Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2021 Dissertations (UMKC)
    • 2021 UMKC Dissertations - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2021 Dissertations (UMKC)
    • 2021 UMKC Dissertations - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Building a reliable and secure management framework for software-defined networks

    Alenezi, Faheed A.F.
    View/Open
    [PDF] Building a reliable and secure management framework for software-defined networks (17.42Mb)
    Date
    2021
    Metadata
    [+] Show full item record
    Abstract
    The Software-Defined Networking (SDN) technologies promise to enhance the performance and cost of managing both wired and wireless network infrastructures, functions, controls, and services (i.e., Internet of Things). However, centralized management in softwarization architecture poses new security, reliability, and scalability challenges. Significantly, the current OpenFlow Discovery Protocol (OFDP) in SDN induces substantial issues due to its gossipy, centralized, periodic, and tardy protocol. Furthermore, the problems are aggravated in the wireless and mobile SDN due to the dynamic topology churns and the lack of link-layer discovery methods. In this work, we tackle both security and reliability management issues in SDN. Specifically, we design and build a novel multitemporal cross-stratum discovery proto- col framework, which efficiently orchestrates different reliability monitoring mechanisms over SDN networks and synchronizes the control messages among various applications. It facilitates multiple discovery frequency timers for each target over different stratum instead of using a uniform discovery timer for the entire network. It supports many common reliability monitoring factors for registered applications by analyzing offline and online network architecture information such as network topologies, traffic flows, virtualization architectures, and protocols. The framework consists of traffic-aware discovery (TaDPole), and centrality-aware protocol (CAMLE) facilities. We implemented the framework on Ryu controller. Extensive Mininet experimental results validate that the framework significantly improves discovery message efficiency and makes the control traffic less bursty than OFDP with a uniform timer. It also reduces the network status discovery delay without increasing the control overhead. We then evaluated the security issues in SDN and proposed an SDN-based Wormhole Analysis using the Neighbor Similarity (SWANS) approach as a novel wormhole countermeasure in a Software-defined MANET. As SWANS analyses the similarity of neighbor counts at a centralized SDN controller, it apprehends wormholes not only without requiring any particular location information but also without causing significant communication and coordination overhead. SWANS also countermeasures various false-positive and false-negative scenarios generated by the Link Layer Discovery Protocol (LLDP) vulnerability. We performed extensive studies via both analysis and simulations. Our simulation results show that SWANS can detect wormhole attacks efficiently with low false-positive and false-negative rates.
    Table of Contents
    Introduction -- Background -- Literature review -- Traffic-aware discovery protocol for software-defined wireless and mobile networks -- Centrality-aware multitemporal discovery protocol for software-defined networks -- SDN-based wormhole analysis using the neighbor similarity for a Mobile Ad hoc Network (MANET) -- Conclusions and future work
    URI
    https://hdl.handle.net/10355/88286
    Degree
    Ph.D. (Doctor of Philosophy)
    Thesis Department
    Computer Networking and Communication Systems (UMKC)
     
    Computer Science (UMKC)
     
    Collections
    • Computer Science and Electrical Engineering Electronic Theses and Dissertations (UMKC)
    • 2021 UMKC Dissertations - Freely Available Online

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems