Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2020 Dissertations (MU)
    • 2020 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2020 Dissertations (MU)
    • 2020 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Development of tissue based biomaterials for articular cartilage injuries

    Snider, Colten L.
    View/Open
    [PDF] SniderColten.pdf (5.943Mb)
    Date
    2020
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Multiple biomaterials have been developed in this work. Decellularized porcine diaphragm extracellular matrix was homogenized and supplemented with various biomodulatory agents. It was developed as an injectable material with possible applications in mitigation of posttraumatic osteoarthritis (PTOA). Optimizing polycaprolactone and lecithin electrospun nanofibers for increased reproducibility was studied. A neutral pH liquid porcine collagen type I solution was developed for two separate projects including development of collagen microspheres (CMs) and 3D printed scaffolds. The main focus of this dissertation is on the development of CMs. The CMs were fabricated by emulsifying the liquid collagen solution in a water-in-oil emulsion. Characterization of the CMs through electron microscopy, Fourier transform infrared spectroscopy analysis, differential scanning calorimetry, and biocompatibility analysis were conducted. The CMs were then investigated as a potential targeted PTOA mitigating agents by conjugating targeting antibodies on CMs to bind to damaged articular cartilage. CMs were also laden with mesenchymal stem cell and studied in culture over 2 weeks. The targeted CMs successfully bound to damaged cartilage and were able to mitigate reactive oxygen species production from interleukin-1beta stimulated human chondrocyte cells with addition of anti-inflammatory agent, curcumin. Finally, use of the developed liquid collagen as a potential bioink for 3D printing was investigated.
    URI
    https://hdl.handle.net/10355/88917
    Degree
    Ph.D.
    Thesis Department
    Biological Engineering
    Collections
    • 2020 MU dissertations - Freely available online

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems