Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2020 Theses (MU)
    • 2020 MU theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2020 Theses (MU)
    • 2020 MU theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Body-worn accelerometer-based health assessment algorithms for independent living older adults

    Howe, Lia
    View/Open
    [PDF] HoweLiaResearch.pdf (4.802Mb)
    Date
    2020
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    The mainstream smart wearable products used for activity trackers have experienced significant growth recently. Among the older population, collecting long periods of activity data in a real-life setting is challenging even with wearable devices. Studies have found inconsistent and lower accuracies when older adults use these smart devices [1], [2],[2],[3]. As a person ages, many have lower daily levels of activity and their dynamic functional patterns, such as gaits and sit-to-stand transitional movements vary throughout the day. This thesis explores wearable health-tracking applications by evaluating daytime and nighttime pattern metrics calculated from continuous accelerometer signals. These signals were collected externally from the upper trunk of the body in an independent-living environment of 30 elderly volunteers. Our gold standard to validate the metrics from the accelerometer signals were similar metrics calculated from an in-home sensor network [4]. This thesis first developed an algorithm to count steps and another algorithm to detect stand-to-sit and sit-to-stand (STS) to demonstrate the importance of considering differences in daily functional health patterns when creating algorithms. Next, this thesis validates that accelerometer data can show similar motion density results as motion sensor data. And thirdly, this thesis proposes an updated vacancy algorithm using a new motion sensor system that detects when no one is in the living space, compared against the current algorithm.
    URI
    https://hdl.handle.net/10355/88944
    Degree
    M. S.
    Thesis Department
    Computer Engineering
    Collections
    • 2020 MU theses - Freely available online

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems