Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Arts and Sciences (MU)
    • Department of Physics and Astronomy (MU)
    • Physics and Astronomy publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Far-Infrared Spectroscopy of Cationic Polycyclic Aromatic Hydrocarbons: Zero Kinetic Energy Photoelectron Spectroscopy of Pentacene Vaporized from Laser Desorption

    Zhang, Jie
    Han, Fangyuan
    Pei, Linsen
    Kong, Wei
    Li, Aigen
    View/Open
    [PDF] Article (722.6Kb)
    Date
    2010
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    The distinctive set of infrared (IR) emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 μm are ubiquitously seen in a wide variety of astrophysical environments. They are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. However, not a single PAH species has yet been identified in space, as the mid-IR vibrational bands are mostly representative of functional groups and thus do not allow one to fingerprint individual PAH molecules. In contrast, the far-IR (FIR) bands are sensitive to the skeletal characteristics of a molecule, hence they are important for chemical identification of unknown species. With an aim to offer laboratory astrophysical data for the Herschel Space Observatory, Stratospheric Observatory for Infrared Astronomy, and similar future space missions, in this work we report neutral and cation FIR spectroscopy of pentacene (C22H14), a five-ring PAH molecule. We report three IR active modes of cationic pentacene at 53.3, 84.8, and 266 μm that may be detectable by space missions such as the SAFARI instrument on board SPICA. In the experiment, pentacene is vaporized from a laser desorption source and cooled by a supersonic argon beam. We have obtained results from two-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy photoelectron (ZEKE) spectroscopy. Several skeletal vibrational modes of the first electronically excited state of the neutral species and those of the cation are assigned, with the aid of ab initio and density functional calculations. Although ZEKE is governed by the Franck-Condon principle different from direct IR absorption or emission, vibronic coupling in the long ribbon-like molecule results in the observation of a few IR active modes. Within the experimental resolution of ~7 cm-1, the frequency values from our calculation agree with the experiment for the cation, but differ for the electronically excited intermediate state. Consequently, modeling of the intensity distribution is difficult and may require explicit inclusion of vibronic interactions.
    URI
    http://hdl.handle.net/10355/9080
    Citation
    Jie Zhang et al 2010 ApJ 715 485
    Collections
    • Physics and Astronomy publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems