3D Human Modeling using Virtual Multi-View Stereopsis and Object-Camera Motion Estimation

MOspace/Manakin Repository

Breadcrumbs Navigation

3D Human Modeling using Virtual Multi-View Stereopsis and Object-Camera Motion Estimation

Please use this identifier to cite or link to this item: http://hdl.handle.net/10355/9197

[+] show full item record


Title: 3D Human Modeling using Virtual Multi-View Stereopsis and Object-Camera Motion Estimation
Author: Dao, Lam; Hong, R.; DeSouza, Guilherme
Keywords: motion detection
camera calibration
three-dimensional forms
Date: 2009-10
Publisher: IEEE
Citation: Proceedings of the 2009 IEEE International Conference on Robotic System (IROS), pp. 4294-4299, Oct. 2009.
Abstract: This paper presents a method for multi-view 3D modeling of human bodies using virtual stereopsis. The algorithm expands and improves the method used in [5], but unlike that method, our approach does not require multiple calibrated cameras and/or carefully-positioned turn tables. Instead, an algorithm using SIFT feature extraction is employed and an accurate motion estimation is performed to calculate the position of virtual cameras around the object. That is, by employing a single pair of cameras mounted on a same tripod, our algorithm computes the relative pose between camera and object and creates virtual cameras from the consecutive images in the video sequence. Besides not requiring any special setup, another advantage of our method is in the simplicity to obtain denser models if necessary: by only increasing the number of sampled images during the object-camera motion. As the quantitative results presented here demonstrate, our method compares to the PMVS method, while it makes it much simpler and cost-effective to implement.
URI: http://hdl.handle.net/10355/9197
ISBN: 978-1-4244-3804-4/09

This item appears in the following Collection(s)

[+] show full item record