Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Engineering (MU)
    • Department of Electrical Engineering and Computer Science (MU)
    • Electrical Engineering and Computer Science publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Engineering (MU)
    • Department of Electrical Engineering and Computer Science (MU)
    • Electrical Engineering and Computer Science publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    A New Hierarchical Particle Filtering for Markerless Human Motion Capture

    Dong, Yuanqiang
    DeSouza, Guilherme
    View/Open
    [PDF] NewHierarchicalParticleFiltering.pdf (1.633Mb)
    Date
    2009
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    Particle filtering (also known as the condensation algorithm) has been widely applied to model-based human motion capture. However, the number of particles required for the algorithm to work increases exponentially with the dimensionality of the model. In order to alleviate this computational explosion, we propose a two-level hierarchical framework. At the coarse level, the configuration space is discretized into large partitions and a suboptimal estimation is calculated. At the fine level, new particles in the vicinity of the suboptimal estimation are created using a more likely and narrow configuration space, allowing the original coarse estimate to be refined more efficiently. Our preliminary results demonstrates that this hierarchical framework achieves accurate estimation of the human posture with significantly reduction in the number of particles.
    URI
    http://hdl.handle.net/10355/9233
    Part of
    Electrical and Computer Engineering publications (MU)
    Citation
    Proceedings of the 2009 IEEE Workshop on Computational Intelligence for Visual Intelligence and IEEE Symposium Series on Computational Intelligence (CIVI), pp. 14-21, Nashville, TN.
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • Electrical Engineering and Computer Science publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems