Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Engineering (MU)
    • Department of Electrical Engineering and Computer Science (MU)
    • Electrical Engineering and Computer Science publications (MU)
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • College of Engineering (MU)
    • Department of Electrical Engineering and Computer Science (MU)
    • Electrical Engineering and Computer Science publications (MU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Power-Rate-Distortion Analysis for Wireless Video Communication under Energy Constraints

    He, Zhihai, 1973-
    Liang, Yongfang
    Chen, Lulin
    Ahmad, Ishfaq
    Wu, Dapeng
    View/Open
    [PDF] PowerRateDistortionAnalysisWirelessVideoCommunication.pdf (855.7Kb)
    Date
    2004
    Format
    Article
    Metadata
    [+] Show full item record
    Abstract
    Mobile devices performing video coding and streaming over wireless and pervasive communication networks are limited in energy supply. To prolong the operational lifetime of these devices, an embedded video encoding system should be able to adjust its computational complexity and energy consumption as demanded by the situation and its environment. To analyze, control, and optimize the rate-distortion (R-D) behavior of the wireless video communication system under the energy constraint, we develop a power-rate-distortion (PR-D) analysis framework, which extends the traditional R-D analysis by including another dimension, the power consumption. Specifically, in this paper, we analyze the encoding mechanism of typical video coding systems, and develop a parametric video encoding architecture which is fully scalable in computational complexity. Using dynamic voltage scaling (DVS), an energy consumption management technology recently developed in CMOS circuits design, the complexity scalability can be translated into the energy consumption scalability of the video encoder. We investigate the R-D behavior of the complexity control parameters and establish an analytic P-R-D model. Both theoretically and experimentally, we show that, using this P-R-D model, the video coding system is able to automatically adjust its complexity control parameters to match the available energy supply of the mobile device while maximizing the picture quality. The P-RD model provides a theoretical guideline for system design and performance optimization in mobile video communication under energy constraints.
    URI
    http://hdl.handle.net/10355/9306
    Part of
    Electrical and Computer Engineering publications (MU)
    Citation
    IEEE Transactions on Circuits and System for Video Technology, vol. 20, No. 10, pp. 1-13, April 2004.
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • Electrical Engineering and Computer Science publications (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems