Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2009 Dissertations (MU)
    • 2009 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2009 Dissertations (MU)
    • 2009 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Streaming video using cooperative networking

    Zhu, Yingnan, 1978-
    View/Open
    [PDF] public.pdf (2.121Kb)
    [PDF] short.pdf (9.626Kb)
    [PDF] research.pdf (1.456Mb)
    Date
    2009
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    The main objective of this dissertation is to improve the overall video streaming performance in various networking environments, such as IP-multicast in wired network and wireless mesh networks (WMNs), using cooperation among participants including clients and routers. We investigate a number of key challenging issues associated with video streaming, and we explore solutions to those issues using a cooperative networking approach, which includes constructing overlay Peer-to-Peer (P2P) retransmission networks and exploring hybrid architecture of content distribution networks (CDN) and P2P networks. To solve the reliability issue in IP-multicast, we propose a novel overlay P2P retransmission architecture to exploit path diversity. An approach that leverages both disjoint path finding and periodic selective probing to take into account peer's recent packet loss probability, retransmission delay and recent retransmission performance is proposed to effectively construct an efficient and dynamic overlay peer retransmission network. To improve the video streaming quality over WMNs, we design a Unified Peer-to-Peer and Cache (UPAC) framework for high quality video on demand services over infrastructure multi-hop WMNs. In this framework, mesh routers work cooperatively with mesh clients to construct a CDN and P2P hybrid structure to improve the QoS of video streaming. We present a series of solutions to address the key challenges in video streaming over WMNs, i.e., the design of a new high throughput routing metric, a new enhanced routing algorithm, a cross-layer server and path selection strategy, a novel admission control algorithm with per-flow routing and a new P2P structure for video streaming. Simulation results show that the proposed UPAC framework can utilize the capacity of WMNs better than existing approaches and improve the video streaming quality over WMNs significantly.
    URI
    https://hdl.handle.net/10355/9569
    https://doi.org/10.32469/10355/9569
    Degree
    Ph. D.
    Thesis Department
    Computer science (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2009 MU dissertations - Freely available online
    • Computer Science electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems