Adaptive Silhouette Extraction In Dynamic Environments Using Fuzzy Logic

MOspace/Manakin Repository

Breadcrumbs Navigation

Adaptive Silhouette Extraction In Dynamic Environments Using Fuzzy Logic

Please use this identifier to cite or link to this item: http://hdl.handle.net/10355/9720

[+] show full item record


Title: Adaptive Silhouette Extraction In Dynamic Environments Using Fuzzy Logic
Author: Chen, Xi; He, Zhihai, 1973-; Keller, James M.; Anderson, Derek T., 1979-; Skubic, Marge
Date: 2006-07
Publisher: IEEE
Citation: Chen X, He Z, Keller J, Anderson D & Skubic M, "Adaptive Silhouette Extraction In Dynamic Environments Using Fuzzy Logic," Proceedings, IEEE International Conference on Fuzzy Systems, Vancouver, British Columbia, Canada, July 16-21, 2006, p 236-243.
Abstract: Extracting a human silhouette from an image is the enabling step for many high-level vision processing tasks, such as human tracking and activity analysis. In a previous paper, we addressed some of the challenges in silhouette extraction and human tracking in a real-world unconstrained environment where the background is complex and dynamic. We extracted features from image regions, accumulated the feature information over time, fused high-level knowledge with low-level features, and built a time-varying background model. A problem with our system is that by adapting the background model, objects moved by a human are difficult to handle. In order to reinsert them into the background, we run the risk of cutting off part of the human silhouette, such as in a quick arm movement. In this paper, we develop a fuzzy logic inference system to detach the silhouette of a moving object from the human body. Our experimental results demonstrate that the fuzzy inference system is very efficient and robust.
URI: http://hdl.handle.net/10355/9720
ISSN: 0-7803-9489-5/06

This item appears in the following Collection(s)

[+] show full item record